Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing

Classical shock

A controller feature within a vibration test system to produce shock pulse signals, such as half-sine, haversine, sawtooth and triangular.

img

Classical shock

expand_more
chevron_left
chevron_right

Classical shock control creates a series of pulses to excite the device or structure under test, measures the structure’s response and performs a spectral analysis to determine its response and resonance characteristics. This type of testing profile offers higher accuracy and repeatability than regular drop-test methods.

USE SCENARIOS

  • Shock testing to meet MIL-STD, DIN, ISO, IEC and other standards
  • Shock response spectrum (SRS) computation on any input signals
  • Shaker test replacement for drop testing
  • Transient time history (TTH) control for low-frequency seismic testing, transportation handling and earthquake testing to Bellcore standards

CHARACTERISTICS

Configuring a profile waveform for any given test is easily done by selecting a pulse from a standard library of classical waveforms. The user then enters the values for the pulse’s peak acceleration amplitude and duration. As the pulse parameters change, the graphical representation of the profile should be automatically updated, as should the peak velocity and displacement values.

The test profile demands should be displayed together with the shaker’s limits. The user will often be warned if the test is within, say, 10 percent of these limits, and always, if they will be exceeded.

Key to high-precision classical shock control is a high sampling frequency, typically up to 48 k samples per second, for measuring the input waveforms. A linear filter design minimizes distortion and preserves the true waveform shape, while algorithms maximize use of the shaker’s full stroke. A low-pass filter is normally used, with a user-specified cut-off frequency that applies to the reference waveform, all input channels and the drive output.

For convenient pulse selection, the waveform library includes a range of pulses, typically: half-sine, haversine, initial and terminal-peak sawtooth, triangle, rectangle and trapezoid. A Constant Output Level Amplitude (COLA) output pulse is often available to synchronize external equipment.

TTH control is usually offered as an option to the standard classical shock feature. It allows the user to reproduce short-duration waveforms imported from disk files. Commonly supported file formats are ASCII-delimited format (tab, comma or space) using Y values or XY data pairs, ASCII UFF and binary.

Alternatively, pre-stored profiles for Bellcore Z1, Z2, Z3 and Z4; and sine, chirp and burst sine are often available. The waveform may be digitally resampled in terms of the samples per second and frame size. Profile compensation, such as DC offset removal and high pass filters, allow the waveform to be optimized for shaker testing.