Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing

New Analysis Capabilities for Fatigue Life of Welded Components

Welding is often necessary in product design and production, but it can lead to susceptibility to fatigue cracking.  Predicting the fatigue life of welded components is therefore critical to ensuring product durability requirements are met. 

 

A number of analytical approaches have been used predict to weld durability.  These existing methods may struggle to accurately predict fatigue life in some cases.  This is particularly true in cases of complicated weldments and advanced materials that have become more prevalent in the current lightweighting environment.  In some weldments, cracks may initiate but grow very slowly – or not at all – depending on how the weld is designed.  Understanding the total life of the weld becomes very important to ensuring product durability.

The WholeLife fatigue method in nCode DesignLife addresses this analysis gap, bringing powerful new analysis capabilities for a more accurate prediction of weld fatigue life that results in improved product durability, reduced overdesign, and lower weight and cost.  WholeLife uses an integrated approach to model fatigue over the entire lifetime of the component – from very early stages of crack initiation to macroscopic crack growth and final fraction – to give a more accurate determination of weld life.  This combined approach of crack initiation and crack growth overcomes limitations and assumptions that are inherent in adopting either of these approaches separately.

SAE International’s Fatigue Design and Evaluation (FD&E) committee have evaluated and validated this ‘total-life’ approach as part of a multi-year research project involving a team of industry-wide durability experts, including HBM Prenscia. Results of this new total-life method detailing our involvement in this FD&E total life project were discussed at the M200 session of the 2019 WCX: World Congress Experience.

We also shared a presentation describing how this total-life method has been implemented in nCode, including descriptions of the required inputs for FE modeling, material properties, residual stresses, and applied loading. 

Ready to achieve success through failure prediction?