Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing

Optical Sensors for ITER Fusion Experiment in Unique Application

The ITER Project

HBM signed a contract with ITER – International Fusion Energy Organization – for the supply of optical strain gauges for the ITER Vacuum Vessel. This is one of the largest single orders received at HBM, emphasizing the growing importance and market chances for fiber optic solutions. It is expected to run for two years.

This contract adds to previous orders from ITER to the consortium composed of HBM FiberSensing and Smartec (a RocTest company). The consortium had already won the ITER tender concerning the qualification and supply of fiber optic sensing systems, based on FBG (Fiber Bragg Grating) technology and Fabry-Perot interferometers, to measure strain, displacement and temperature in the Thermonuclear Experimental Reactor's magnets.

The ITER Project: the way to new energy

The ITER project for fusion is a large-scale scientific experiment that aims at developing a new, cleaner, and sustainable source of energy, by producing commercial energy from fusion – the process that occurs at the core of the Sun. It involves the construction of a Thermonuclear Experimental Reactor which is being built in Cadarache, France.  Every second, our Sun turns 600 million tons of Hydrogen into Helium, releasing an enormous amount of energy. In ITER, the fusion reaction will be achieved in a Tokamak device, a next-generation fusion machine that uses magnetic fields, including large super-conducting magnets, designed to harness the energy of fusion, i.e., to contain and control the hot plasma. The fusion between Deuterium and Tritium (D-T) will produce one Helium nuclei, one neutron and energy. The energy will then be transformed into heat, required to produce steam, which would then– by way of turbines and alternators – produce electricity.

Problem Sensing systems to be installed in the super conducting coils and on a vacuum vessel of the ITER Project, operating under vacuum, radiation, large electromagnetic fields, and cryogenic temperatures, were required.

 

Solution The aim of the first contract was to provide and install optical sensors capable of bearing particular environmental constraints on different mechanical structures of  superconducting magnets. In total, approximately 500 to 900 sensors together with the related data acquisition systems were developed, produced and delivered. 

 

Result This contract was successfully achieved and, as a result, HBM just signed a new contract for the qualification and supply of optical sensing systems for the ITER’s vacuum vessel. 

Qualification and supply of optical sensing systems for the vacuum vessel

The ITER vacuum vessel is a complex structure, which weighs around 5,000 tones. It is located inside the cryostat of the ITER device, and its basic function is to operate as the chamber that hosts the fusion reaction. Within this torus-shaped vessel, plasma particles collide and release energy without touching any of its walls due to the process of magnetic confinement. The vacuum vessel will operate at a temperature close to 100 °C and at a nominal water pressure in the inter-space of 11 atmospheres, equivalent to the underwater pressure at 110 meters. Due to its complexity and size, the construction and monitoring of such massive structure involve a high degree of precision. Thanks to the massive testing involved in this project, HBM expects that the sensors qualified in this program will find other applications at ITER and other customers who require measurements in high-temperature, vacuum and radiation environments.
null

Qualification and supply of optical sensing systems for superconducting magnets

As far the previous contract is concerned, HBM FiberSensing provided strain, displacement and temperature optical sensors to be installed on coils and different mechanical structures of the ITER superconductive magnets. The first phase of the work included the adaptation and qualification of optical sensors, interrogators and software for the particular constraints of the application, including cryogenic temperatures down to 4K, radiation and vacuum. A second phase consisted of series production and delivery of the full sensing systems. In total, approximately 500 to 900 sensors together with the related data acquisition systems were delivered, in addition to complementary accessories such as cables and software. The time frame was as follows:
  • Phase 1 — Sensor development and testing.
  • Phase 2 — Qualification in the following environments: high radiation; high vacuum and cryogenic - liquid helium temperatures. 2011–2014
  • Phase 3 — Sensor Industrialization, production and delivery. 2014–2017
null
null
null
null

About ITER

The purpose of ITER is to establish one of the largest and most ambitious international science projects ever conducted with the contribution of its seven international Members — China, the European Union, India, Japan, Korea, Russia and the United States. The signature process of the Global Insurance Contract that covers the construction and assembly of the ITER plan was finalized on November 30th, 2010.

Related Pages