Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing
null

Real-Time Test Results from HBM - for the New Super-Efficient Motor

Real-Time Test Results from HBM - for the New Super-Efficient Motor

Researchers from Japanese institutes NEDO and MagHEM are working on a Super-efficient Motor with 40% (*) less energy loss. The HBM eDrive testing system is used to test the motor’s efficiency for its further development - for good reasons.

The Japanese New Energy and Industrial Technology Development Organization (NEDO) is one of the world's leading public research organizations dedicated to the development of new energies. In a recent research project, researchers from NEDO worked with the organization "MagHEM" (which develops innovative magnetic materials) on a "super" motor that uses new magnetic materials to reduce its energy loss and increase its power density by 40% compared to conventional electric motors. There are many areas of application for such a highly efficient motor ranging from household appliances to industrial machinery, and automobiles, to name just a few.
Problem
Researchers at NEDO and MagHEM (Japan) are developing a magnetic motor with 40% less energy loss. Previous efficiency testing systems could not provide synchronized data in real time - an important prerequisite for further development of the motor.

Solution
By using the HBM eDrive testing system, including the dynamic GEN7tA power analyzer, the measured values and calculations are available in seconds.

Result
Phase 1 of the motor development has already been completed - thanks in part to meaningful measurement results. Now it's time for Phase 2, which provides for further miniaturization of the motor.

40% less energy loss: Japanese Super-efficient Motor from NEDO tested with Genesis HighSpeed from HBM

NEDO/MagHEM's test bench for the new ultra-high-efficiency motor with magnetic bearings uses the HBM eDrive testing system, including the highly dynamic GEN7tA power meter, for electrical efficiency measurement. In conventional systems, synchronous measurement was difficult because it was done with a torque meter, a power meter, and multiple measuring instruments, depending on the measurement parameters. Synchronizing the measurements of all measured parameters by introducing the eDrive GEN7tA system makes measuring substantially easier. In addition, real-time computation enables simultaneous observation of measured waveforms such as magnetic flux and torque waveforms as well as computed waveforms such as iron loss separation, thereby significantly improving test efficiency. Since iron-loss separation requires data in the switching frequency range of the inverter, high-speed sampling is necessary. However, with the conventional power meter, the sampling was relatively slow and it was impossible to capture the phenomenon in the relatively high-speed regions in order to investigate torque ripple or switching frequency related issues. Only the HBM eDrive system can measure voltage and current signals with high-speed sampling of 2 MS/s and provide 1/2 cycle power measurement calculation. (However, since the maximum speed of motor rotation is 20,000 rpm and the switching frequency is 20 kHz, further high-speed measurement is required for high frequency component measurement.) With the conventional power meter, only analysis based on the averaged calculation results was possible, but since HBM eDrive processes all the raw data (instantaneous data) at high speed, both the speed and the accuracy of the analysis have greatly improved.  A high voltage of 600 V can be measured directly by using the Genesis HighSpeed 1000 V input card. It is also more convenient; there is no need to switch between the time-axis display and the FFT display, so the researchers can check the output on the same screen. (*) The NEDO/MagHEM researchers are now focusing on developing new high-performance magnets, together with the results of the development of soft magnetic materials and motor evaluation technology in the first phase, aiming to develop magnetic materials that can reduce its energy loss and increase its power density by 40% compared to conventional electric motors. The specific development goals of each research and development item shall be in accordance with the research and development plan of the separate sheet.
null
null
null

NEDO

The Japanese New Energy and Industrial Technology Development Organization (NEDO) combines the efforts of industry, government and academia and leveraging established international research networks and is committed to contributing to the resolution of energy and global environmental problems and further enhancing Japan's industrial competitiveness.

Related Products