Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing

HBM technology and service for building up the first German offshore wind farm

Efficiently generating electric power without polluting the environment becomes increasingly important in times of high commodity prices and growing environmental awareness among consumers. Within the scope of the OGOWin research project for building up a first prototype of a jacket-construction-type offshore wind power plant, HBM supplies and installs test and measurement equipment for a test plant in Bremerhaven, Germany. The challenge is to install the equipment such that it also withstands the extreme stresses to which the production models will be subjected later when used in rough sea conditions.

OGOWin: offshore wind farm

Has the wind turbine the ability to withstand the loads it is subjected to at sea? That was the challenge facing HBM, when the company provided testing and measuring equipment for the first prototype of an offshore wind turbine with a jacket support structure within the framework of the OGOWin research project.
Offshore wind farms comprise many wind turbines installed far off shore in the open sea and permanently producing clean current. This is an attractive concept which, however, is not easy to implement because of the stresses resulting from wind, waves and saltwater to which the materials used are subjected. For this reason, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) subsidizes the research and optimization of disarrayed foundation structures for offshore wind power plants (OGOWin) regarding material usage, the assembly process and new manufacturing methods for the carrying structure of wind power plants. Prior to the actual use of the foundation structures on the sea bed, the OGOWin project focuses on onshore research of the offshore plants. The two main components of a wind power plant are the carrying structure (jacket + tower) and the actual nacelle with the rotor blades for generating electric power from the wind. The OGOWin project focuses on the jacket as the object of study. Researchers aim at minimizing material usage, because steel is expensive and a jacket weighs about 350 tons. In addition, the status of the wind power plant is to be continuously monitored. Maintenance cycles and the residual service life are inferred from the results.
null

Criteria of Selecting the Measurement Technology: Positive Experiences, Convincing Results, Competent Service

The Fraunhofer Center for Wind Energy and Marine Technology (SWMT) in Bremerhaven, Germany, is responsible for the design and layout of the test and measurement equipment at the carrying structure. HBM has built up and installed the test and measurement equipment on behalf of the Fraunhofer CWMT. HBM was chosen, not least because of the positive experiences and convincing results with FINO1, a research platform for offshore wind power for which HBM provided the test and measurement equipment (electrical strain gages installed fully waterproof) already in 2003. It had been used without any problems for several years until an exceptionally strong storm destroyed parts of the platform. Moreover, HBM has a competent and international service team enabling problems to be quickly and reliably eliminated on site. And last but not least, HBM offers both technologies from a single source so that reproducibility is guaranteed.

The Measurement Chain

null
null
null
null
HBM's tasks in the framework of the OGOWin project include installing electrical and fiber-optical strain gages at the "stressed" points of the jacket, cabling the HBM amplifiers and transmitting the measured values to the Fraunhofer Center. The goal is to test both technologies (optical, fiber-Bragg-grating-based strain gages and electrical strain gages) with respect to reproducibility of test results and suitability for use in offshore wind power plants. For implementing the test and measurement concept, HBM provided the required hardware and software (MGC amplifier, opto-electric interrogators, catman software) and installed about 70 strain gages on the jacket. Many measuring points were doubly configured - i.e. strain gages of both technologies were installed. The focus is on analyzing the static and dynamic behavior of the newly developed cast-iron nodes used in this design for the first time. The measuring points were covered with multiple layers to enable them to withstand many years of continuous use in a water depth of up to 40 meters. Test data is transmitted by saltwater-proof cables to the amplifier located at the foot of the tower and sent to Fraunhofer at periodic intervals. There, data is visualized, converted and analyzed using HBM's catman software.

Related Products

No more result to load