Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing

In Structural Health Monitoring, New Technologies are on the Rise

null

White Paper: Optical Fiber Sensors vs. Conventional Electrical Strain Gauges for Infrastructure Monitoring Applications

Virtually every type of public infrastructure, including bridges, pipelines, tunnels, foundations, roadways, dams, etc., is subject to factors that can degrade it or lead to malfunctions.  These structural problems can be the result of deterioration, improper construction methods, seismic activity, nearby construction work, etc.

Although electrical strain gauges have long been used for monitoring structural changes, they sometimes lack the durability and integrity necessary to provide accurate, actionable information over extended periods.

Optical fiber strain gauges that are based on fiber Bragg gratings (FBGs) operate on very different principles than those that govern traditional electrical strain gauges. In simplified terms, a fiber Bragg grating is a microstructure (typically a few millimeters long) created by modifying a standard single-mode telecom fiber, germanium-doped, with a UV laser. This microstructure creates a periodic variation in the refractive index of that optical fiber. As light travels along the fiber, the Bragg grating reflects a very narrow range of wavelengths; all of the other wavelengths are transmitted through the grating.

The center of this band of reflected wavelengths is known as the Bragg wavelength (Figures 1 and 2). Under stress, the period of an FBG increases due to the physical stretching or compression of the optical fiber. This change results in a shift in the Bragg wavelength, which is then detected and recorded by the interrogator, i.e., data acquisition system ...

Click below to read the full white paper.

null

Download the Full White Paper

null

Further Reading

No more result to load