Chat with us, powered by LiveChat
arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustic application See All Software See All Transducers See All Vibration Testing Equipment See All Electroacousticsb - OLD unpublished See All Academy See All Resource Center See All Services See All Support See All Applications See All Industries See All Our Business
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ systems See All High precision and calibration systems See All Industrial electronics See All Power Analyser See All S&V Handheld devices See All S&V Signal conditioner See All Accessories for electroacoustic application See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Temperature See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for modal exciters See All Test Solutions See All Training Courses See All Primers and Handbooks See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Acoustics See All Asset & Process Monitoring See All Electric Power See All NVH See All OEM Custom Sensors See All Structural Integrity See All Vibration See All Automotive & Ground Transportation See All Business Ethics
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories for industrial electronics See All Handheld Software See All Accessories for S&V handheld devices See All BK Connect / PULSE See All API See All Microphone sets See All Microphone Cartridges See All Acoustic calibrators See All Special microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories for strain gauges See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometer See All Charge accelerometer See All Impulse hammers / impedance heads See All Cables See All Accessories See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All Resources See All Electroacoustics See All Environmental Noise See All Noise Source Identification See All Product Noise See All Sound Power and Sound Pressure See All Vehicle Pass-by Noise See All Production Testing and Quality Assurance See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All High Voltage See All OEM Sensors for the Agriculture Industry See All OEM Sensors for Robotics and Torque Applications See All Structural Dynamics See All Material Properties Testing
null

An Introduction to Optical Measurement Chains Based on Fiber Bragg Gratings (FBG)

This article aims to help system integrators and engineers choose the right components for multi-physics optical monitoring solutions. This is crucial, as all major structures – such as bridges, buildings, pipelines, and tunnels – are exposed to factors that cause strain and degradation. Without reliable and accurate monitoring of strain, temperature and other physical parameters, malfunctions and structural issues might not be detected, resulting in disasters.

In the following, we’ll discuss structural health monitoring (SHM) as a discipline, and we’ll show you how a typical optical Fiber Bragg Grating (FBG) based measurement chain – hosting several sensors in one optical fiber, interrogators, and PC software – can easily be designed.

null

Structural Health Monitoring – Preventing Failure instead of Repairing Damage

Large and expensive structures, such as tunnels, bridges, and pipelines, need regular, cost-effective monitoring of their structural integrity. This ensures safety and reliability.

Structural health monitoring (SHM) plays a critical role here [1], because it takes a proactive approach to maintenance and monitoring, rather than waiting for damage to happen and then repairing it. This proactive method can save money and prevent unplanned downtime of the structure.

But the need for reliable and accurate SHM installation in major infrastructure is often ignored for reasons such as cost, confusion over which sensors to use, and difficulty interpreting strain data. This becomes a problem when strain-induced structural damage happens. And it does happen regularly, since civil infrastructure is exposed to constant loads and environmental agents that cause wear and degradation over time.